Enhancing Operating System Algorithms through
Hardware Performance Monitoring

Reza Azimi, David Tam, Livio Soares, and Michael Stumm
Department of Electrical and Computer Engineering
University of Toronto, Canada

1. INTRODUCTION

Much of our research has focused on optimizing operat-
ing system performance at run time by automatically ex-
tracting monitoring information from the OS and from the
hardware, and then using that information to tune the OS
accordingly. Processor Hardware Performance Monitoring
(HPM) units have been an important source of the monitor-
ing information gathered, and we have developed extensive
infrastructure to exploit their functionality. Specifically, our
hardware performance monitoring tools have the following
abilities:

Fine-grained HPC Multiplexing: to overcome the
limited number of hardware counters available, we apply
fast, in-kernel multiplexing of HPC groups to provide a large
set of logical counters with acceptable accuracy.

Online Computation of Stall Breakdown Stack: the
speculative stall breakdown feature of the PowerPC970 and
POWERS processors is used to attribute each stall cycle
to a cause. By using our multiplexing engine we are able
to compute the full stall breakdown stack online with very
small overhead. We use the value of many counters to refine
and readjust the stall breakdown online.

Source-based Data Sampling: the continuous data
sampling feature available in POWERS is used to sample
data accesses based on the source from which the data is
brought to the CPU (i.e., remote caches, local or remote
memory).

Our research group has obtained significant experience
programming and validating various features of the HPM
units in both IBM PowerPC970 and POWERS processors
over the past three years, and we have explored our OS
research ideas on both the Linux and K42 operating sys-
tems, using a diverse set of workloads as benchmarks. The
tools we have developed have been used by at least three
research groups at IBM’s T.J. Watson Research Lab: Con-
tinuous Program Optimization (CPO) Group, K42 research
operating system Group, and Commercial Scale Out (CSO)
Group.

2. CASE STUDY: SHARING-AWARE
SCHEDULING

Today, chip multiprocessing (CMP) and simultaneous mul-
tithreading (SMT) technologies are widely employed in most
modern microprocessors. As a result, even low end comput-
ing systems and game consoles have become shared memory
multiprocessors with L1 and L2 cache sharing within a chip.
Medium to large-scale systems will have multiple process-
ing chips and hence are effectively SMP-CMP-SMT systems
with non-uniform data sharing overheads. Current operat-
ing system schedulers do not take such non-uniformity in
cache access costs into account, and as a result, distribute
threads across processors in a way that causes many unnec-

essary, long-latency cross-chip cache accesses.

Detecting sharing patterns of (software) threads automat-
ically has been a challenge. Operating systems can only
obtain information at page granularity. To obtain finer-
granularity information, we exploit POWERSb’s continuous
data sampling feature to indirectly monitor the addresses
of the cache lines that are invalidated due to remote cache-
coherence activities and construct a sharing signature for
each thread. Each sharing signature identifies memory re-
gions where the thread is fetching data from caches on re-
mote chips. We then compare the threads’ signatures with
each other to identify the threads that are actively shar-
ing data and cluster them accordingly into processors that
share L2 caches in order to reduce long-latency cross-chip
communications.

We have implemented this scheme for the Linux Kernel
running on an 8-way IBM POWERS5 SMP-CMP-SMT multi-
processor. For commercial multi-threaded server workloads
we are able to eliminate most of the cross-chip communica-
tion.

3. PROPOSALS

3.1 Precise Source-based Data Sampling

In our experience, it is important to be able to sample data
precisely based on their source (L2, L3, remote L2, local and
remote memory). Such information can be used for a num-
ber of OS-level optimization including cache-aware schedul-
ing, sharing-aware scheduling, and NUMA page placement.
We currently use an indirect approach to get this informa-
tion in POWERS5, but the information obtained has quite a
bit of noise associated with it.

3.2 Memory Access Tracking

We propose (and have been studying) simple hardware
support to track memory accesses more precisely.

Cache Line Level-Tracking: The basic idea is to cap-
ture the reuse distance of memory accesses at cache line
granularity with low overhead. An important application
for cache-line granularity reuse distance is to be able to ac-
curately measure the cache needs of applications and predict
the contention on shared caches in CMP systems. Current
techniques, such as watchpoints, have unacceptably high
overheads to be used for online performance optimization.

Page Level-Tracking The basic idea is to be able to
accurately track accesses to virtual pages. Having this in-
formation would be of great value to a number of mem-
ory management-related algorithms. Traditionally, operat-
ing systems track page accesses either by monitoring page
faults or by periodically scanning page table entries for spe-
cific bits set by hardware, but these approaches only provide
a coarse approximation of the true order of page accesses.

	Introduction
	Case Study: Sharing-aware Scheduling
	Proposals
	Precise Source-based Data Sampling
	Memory Access Tracking

